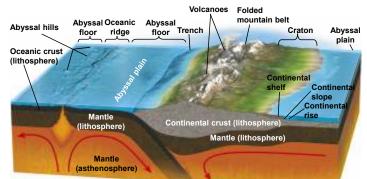


What is geology? The study of dynamic processes occurring on the earth's <u>surface</u> & in its <u>interior</u>. As primitive earth cooled over eons, its interior separated into 3 concentric zones: the core, the

mantle, & the crust.

osph

CORE


- Earth's innermost zone.
- Extremely <u>hot</u>.
- Has a <u>solid</u> inner core believed to consist of an iron-nickel alloy surrounded by an outer <u>liquid</u> core of molten material (<u>magma</u> = molten rock).

MANTLE

- A <u>thick</u> zone surrounding the core.
- Most of it is solid rock—the <u>rigid</u> outermost part.
- Contains the <u>asthenosphere</u>: a zone of hot, partly melted rock that <u>flows</u>; can be deformed like soft plastic.

CRUST

- Outermost and <u>thinnest</u> zone.
- Consists of:
 - <u>continental crust</u>: lies beneath the continents including the continental shelves extending into the oceans.
 - <u>oceanic crust</u>: underlies the ocean basins and makes up 71% of the earth's crust.

- Major features of the earth's <u>crust</u> & upper mantle.
- The *lithosphere*, composed of the crust & <u>outermost</u> <u>mantle</u>, is rigid & brittle.
- The *asthenosphere* (zone in the mantle) can be deformed by <u>heat</u> and <u>pressure</u>.

The earth beneath your feet is <u>moving</u>.

- <u>Convections cells</u> or currents: move large volumes of rock & heat in <u>loops</u> within the mantle like gigantic conveyer belts.
 - These flows of energy & heated materials cause huge rigid plates to move <u>slowly</u> on top of the denser mantle.
- The earth's crust is made up of a eanic crust Oceanic crus mosaic of huge rigid plates, called tectonic plates, which move very slowly across the asthenosphere core Inner in response to forces in the mantle.

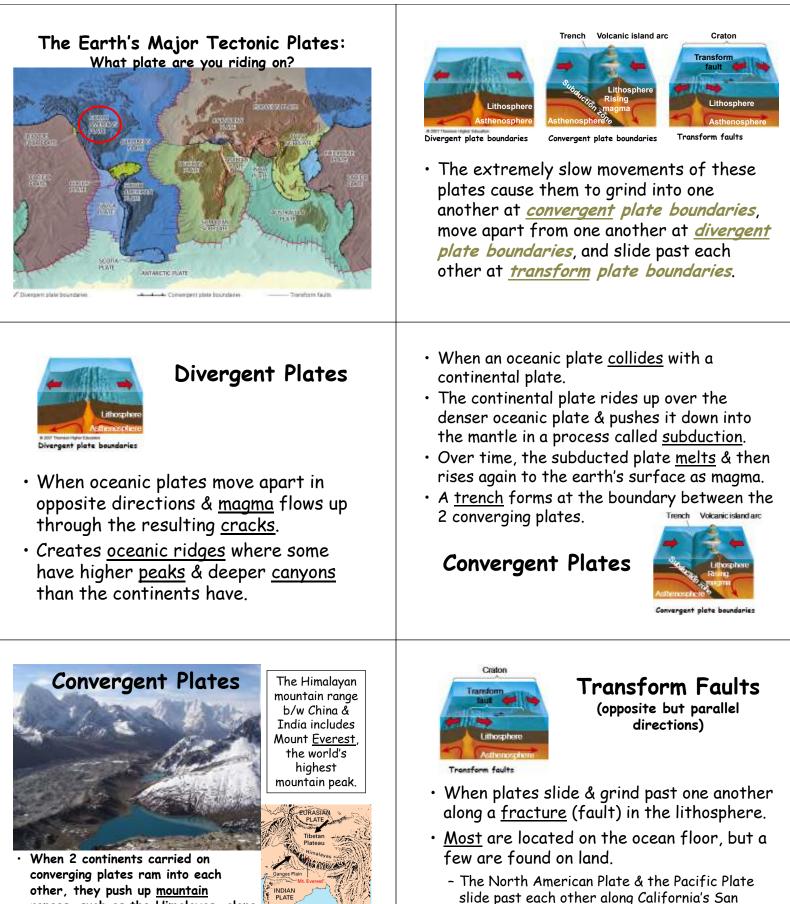
TECTONIC PLATES

- <u>Gigantic</u> rigid plates.
- Composed of the continental & oceanic crust and the rigid outermost part of the mantle: the <u>lithosphere</u>.
- World's largest & slowest-moving surfboards.
 - Their typical speed is about the rate at which <u>fingernails grow</u>.

Rock & <u>fossil evidence</u> indicates that 200-250 million yrs ago, all continents were locked together in a super continent—<u>Pangaea</u>.

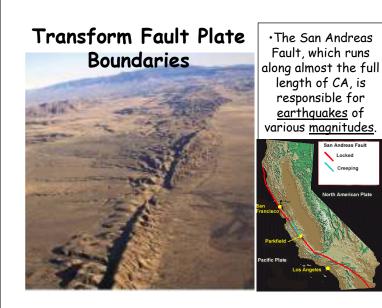
225 million years ago About <u>180</u> million yrs ago, Pangaea began splitting apart as tectonic plates separated, eventually resulting in today's locations of the continents.

Present

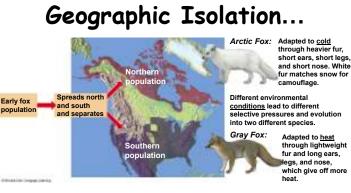


- You <u>ride</u> on one of these plates your whole life without noticing!!!
- Throughout earth's <u>4.6</u> billion year history, continents have <u>split apart</u> & joined as tectonic plates drifted 1,000s of kilometers back & forth atop the mantle.

Most geologic activity takes place at the boundaries between plates as they <u>separate</u>, <u>collide</u>, or <u>slide</u> past one another.


This causes:

- Mountains & oceanic trenches to form.
- <u>Earthquakes</u> to shake parts of the crust.
- <u>Volcanoes</u> to erupt.
- Continents to form or separate.


other, they push up mountain ranges, such as the <u>Himalayas</u>, along the collision boundary.

Andreas fault.

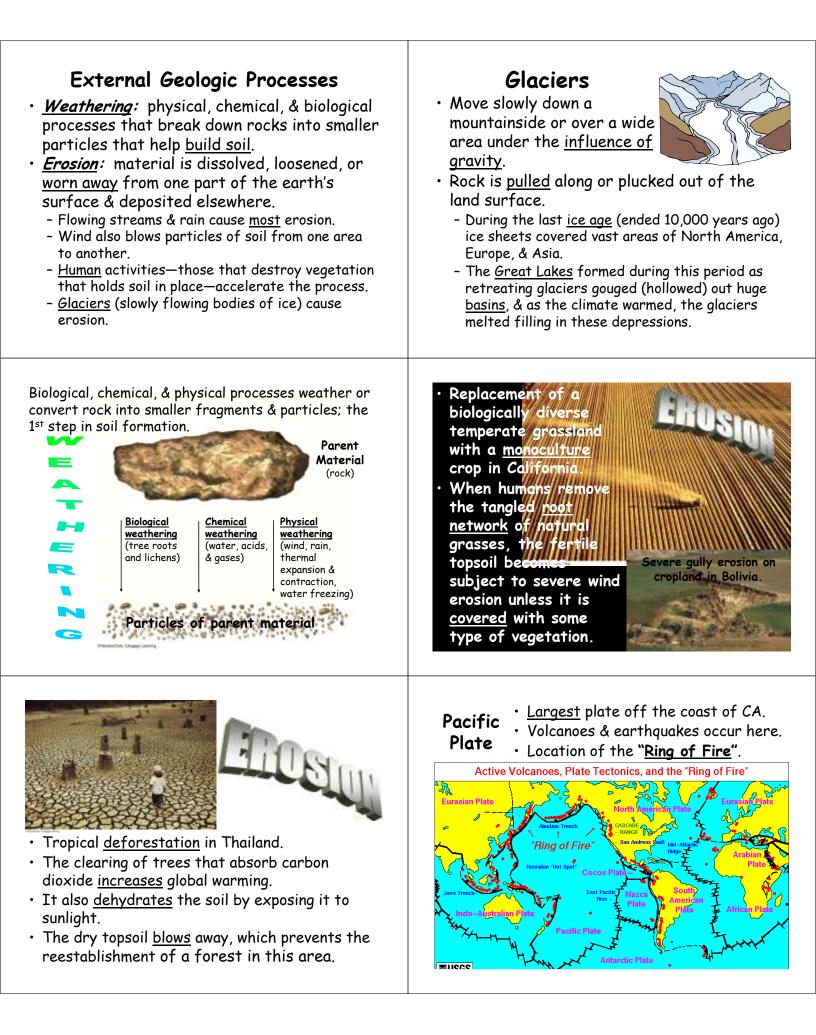
Importance of Geologic Processes

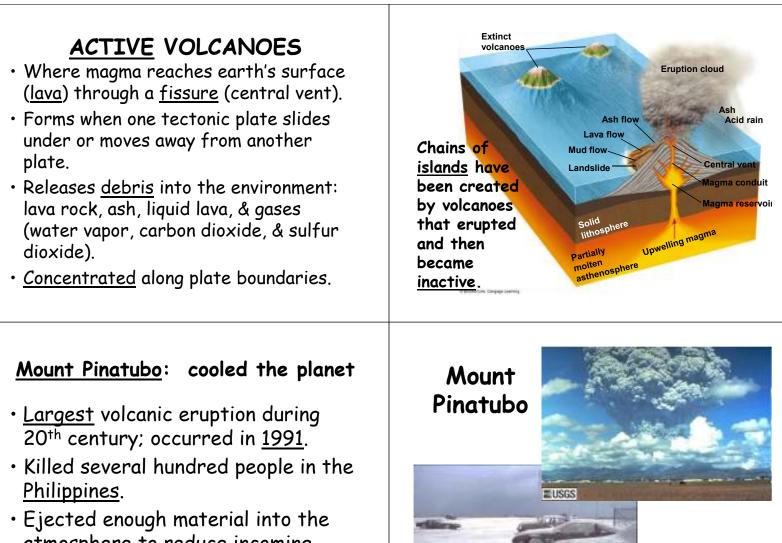
- Plate movements & volcanic eruptions have led to climate change that shifted wildlife habitats, wiped out large numbers of species, & created opportunities for the evolution of new species.
 - The locations of continents and oceanic basins influence climate.
 - The movement of continents have allowed species to move.

through lightweight fur and long ears, which give off more

· ... can lead to reproductive isolation, divergence of gene pools, and speciation.

Importance of Geologic Processes


- · Plate movement adds new land at boundaries and produces mountains, trenches, earthquakes, and volcanoes.
- Tectonic plate movement plays a big part in the <u>recycling</u> of the planet's crust over geological time, which has helped form mineral deposits & promote and sustain life.
- As continents separated, populations became geographically & reproductively isolated, and speciation occurred.


SPECIATION

- New species can arise when members of a population become isolated for a long period of time.
 - Their genetic makeup changes, preventing them from producing fertile offspring with the original population; they become two different sets of species.

Some parts of the earth's surface build up & some wear down.

- Internal geologic processes: generated by heat from earth's interior, typically build up the earth's surface in the form of continental & oceanic crust.
- External geologic processes: driven by energy from the sun (mostly in the form of flowing water and wind) & influenced by gravity; tend to wear down the earth's surface & move matter from one place to another.

atmosphere to <u>reduce</u> incoming <u>solar</u> energy & **cool** the earth's average temperature for 15 months!

Mount St. Helens, WA

- Worst volcanic disaster in <u>U.S.</u> history.
- Erupted May 18, 1980.
- <u>57</u> people & large #s of wildlife were killed.
- Large areas of <u>forests</u> were obliterated.
 - Ecological <u>succession</u> has restored some vegetation.

Benefits of Volcanic Activity

http://videos.howstuifworks.com/discovery/7169

1-mount-pinatubo-erruption-video.htm

- Creates outstanding <u>scenery</u>.
 - -Majestic mountains
 - Some lakes (Crater Lake in OR)
- Highly <u>fertile soils</u> are produced by the weathering of lava.

The collapse of Mt. Mazama created Crater Lake.

EARTHQUAKES

- <u>Forces</u> inside the mantle & along the surface push, deform, & stress rocks.
- When a fault forms, or when there is abrupt movement on an existing fault, <u>energy</u> that has accumulated is released in the form of <u>vibrations</u> = seismic waves.
- <u>Seismic waves</u> move in all directions through the surrounding rock.

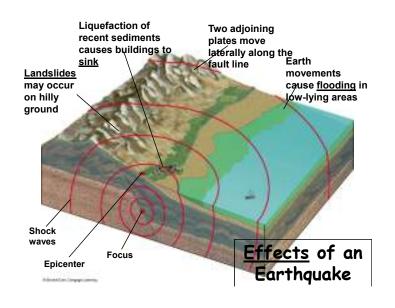
To <u>reduce</u> loss of human life...

- Use historical records & geologic measurements to <u>identify</u> high-risk areas.
- Use <u>monitoring</u> devices that warn us when volcanoes are likely to erupt.
- Develop <u>evacuation</u> plans for volcanic-prone areas.

EARTHQUAKES

- Most occur at <u>boundaries</u> of tectonic plates.
- Effects include shaking & sometimes <u>permanent</u> vertical or horizontal <u>displacement</u> of the ground.
- Serious <u>consequences</u> for people, buildings, bridges, freeway overpasses, dams, & pipelines.

<u>Focus</u>


• Place where an earthquake begins.

Epicenter

• Located on the earth's surface directly above the focus.

Shock Waves

- Seismic waves.
- Energy released to relieve earth's internal stress.
- Move outward from the focus like ripples in a pool of water.

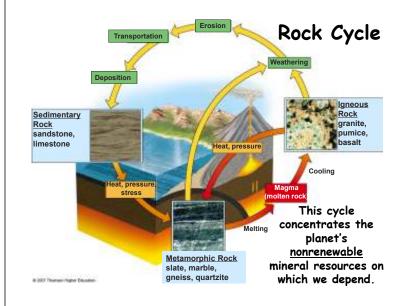
 How do scientists measure the severity of an earthquake? A seismograph records the magnitude (measure of ground shaking) of its seismic waves as indicated by the amplitude (size) of the shock waves. They use the <u>Richter</u> scale: each unit has amplitude 10 times greater than the next smaller unit. A magnitude 5.0 earthquake would result in <u>10 times</u> more ground motion than a magnitude 4.0 earthquake. 	 Using the Richter scale, compare the amount of ground movement from a magnitude 7.0 quake to that of a 5.0 quake. 7.0 → 6.0 → 5.0 10 × 10 A magnitude 7.0 earthquake is <u>100</u> times greater than that of a magnitude 5.0 earthquake.
 Seismologists Rate Earthquakes: Insignificant = less than 4.0 Minor = 4.0 to 4.9 Damaging = 5.0 to 5.9 Destructive = 6.0 to 6.9 Major = 7.0 to 7.9 Great = over 8.0 Largest recorded land earthquake in Chile on May 22, 1960 & measured 9.5 on the Richter scale. 	Areas of greatest earthquake (seismic) risk in the United States.
<section-header><text></text></section-header>	 To <u>reduce</u> loss of life & property Examine historical records & geologic measurements to <u>locate active</u> fault zones. Map <u>high-risk</u> areas & establish building codes to regulate placement & design of buildings in such areas. Engineers can design homes, buildings, bridges, & freeways to be more earthquake resistant ▶ more expensive. People can evaluate the risk & decide where to live.

 <u>Tsunami</u> Series of large <u>waves</u> generated when part of the ocean floor suddenly rises or drops. Caused when faults in the ocean floor move <u>up</u> or <u>down</u> as a result of a large underwater earthquake, or sometimes 	 Travel far across the ocean at <u>speeds</u> as high as jet planes. Hit a coast as a series of towering walls of water that can <u>level</u> buildings. Be detected through a network of a series of tower the provide terms does a find the provide terms of terms of the provide terms of terms of	
 by a volcanic eruption. Sometimes called <u>tidal waves</u>—but they have nothing to do with the tides. 	ocean <u>buoys</u> to provide some degree of early warning.	
 <i>Tsunamis can</i> Also be detected through use of a pressure recorder on the ocean floor. Measures changes in <u>water pressure</u> as tsunami waves pass over it. These data are relayed to a weather buoy, which then transmits the data via <u>satellite</u> to tsunami emergency warning centers. 	 December 2004: Largest loss of life from a tsunami when a great underwater earthquake (9.5 on Richter scale) occurred in the Indian Ocean. Generated waves as high as 100 feet (31 meters). Killed 228,000 people. Devastated coastal areas of Indonesia, Thailand, Sri Lanka, South India, & eastern Africa. No buoys or pressure gauges were in place in the Indian Ocean to provide early warning. 	
<complex-block></complex-block>	 Role of Marine Ecosystems: Satellite observations & ground studies pointed to the role that <u>coral reefs</u> & <u>mangrove forests</u> played in reducing the death toll & destruction from the 2004 tsunami. <u>Intact</u> mangrove forests in parts of Thailand helped to protect buildings & people from the force of huge waves. However, extensive damage & high deaths in India's Tamus state attributed to the <u>clearing</u> of a third of its coastal mangrove forests in recent decades. In Sri Lanka, some of the greatest damage occurred where <u>illegal</u> coral mining & reef damage had caused severe beach erosion. 	

The Earth's crust consists Rock is placed in 3 classes mostly of minerals and rocks based on the way it forms: • Mineral: an element or inorganic compound that occurs naturally in the earth's crust as a solid with a regular <u>Sedimentary</u> internal crystalline structure. - <u>Au</u> (gold), Ag (silver), C (diamonds), NaCl Igneous (salt), SiO₂ (quartzite) Metamorphic • Rock: a solid combination of one or more minerals found in the earth's crust. - Limestone, granite, feldspar, guartz, mica Sedimentary Rock Examples of Sedimentary Rock: • Forms from sediments of dead plant & • sandstone & shale (formed from pressure animal remains & existing rocks that created by deposited layers of mostly are weathered & eroded into tiny sand) • *dolomite* & *limestone* (formed form the particles that are transported by compacted shells, skeletons, & other water, wind, or gravity to downstream, remains of dead organisms) downwind, downhill, or underwater lignite (brown coal) & bituminous (soft sites. coal) (derived from compacted plant Sediments are deposited in layers that remains). accumulate over time & increase the • Gemstones include jasper, malachite, opal, weight & pressure on underlying layers. and zircon. Igneous Rock Examples of Igneous Rock: • Intrusive Igneous Rocks - formed from • Forms below or on the earth's the solidification of magma below surface when magma wells up from ground. the earth's upper mantle or deep - granite crust & then cools and hardens. • Extrusive Igneous Rocks - formed from

- Forms the bulk of the earth's crust; often covered by sedimentary rocks & soil
- the solidification of lava above ground. - lava rock, pumice, basalt, obsidian
- Gemstones formed are diamond, tourmaline, garnet, emerald, amethyst, topaz.

Metamorphic Rock


- When preexisting rock is subjected to high <u>temperatures</u> (which may cause it to partially melt), high <u>pressures</u>, chemically active fluids, or a combination of these agents.
- These forces transform a rock by <u>reshaping</u> its internal crystalline structure along with its physical properties & <u>appearance</u>.
- Location <u>deep</u> within the earth.

Examples of Metamorphic Rock:

- anthracite (a form of coal = <u>hard coal</u>)
- *slate* (formed when <u>shale</u> & mudstone are heated)
- marble (produced when <u>limestone</u> is exposed to heat and pressure)
- Gemstones include the turquoise, <u>ruby</u>, sapphire, zircon.

Rock Cycle

- <u>Interaction</u> of physical & chemical processes that change rocks from one type to another.
- Largest & the <u>slowest</u> of the earth's BGC cycles.
 - Takes <u>millions</u> of years.
 - Rocks are broken down, eroded, crushed, heated, melted, <u>fused</u> together by heat & pressure, cooled, &/or recrystallized within the mantle & in the crust.

<u>Oxygen</u>

• The most abundant *element* in Earth's <u>crust</u>.

Nitrogen

• The most abundant *element* in the Earth's <u>atmosphere</u>.

• The most abundant *metal* in the Earth's <u>core</u>.

<u>Aluminum</u>

- Most abundant *metal* in the Earth's <u>crust</u>, (and the third most abundant element therein, after oxygen and silicon).
- The element commercially extracted from <u>bauxite ore</u>.

Don't Forget to...

Do	this	for	HW!

•